
Enterprise Drupal
John Jennings, Lead Developer 
Johnson & Johnson Technology



Team

• Using a large team of developers versus 1-2 leads to 
many differences in a Drupal project:

- Need for communication

- Technical alignment

- Assignment of work

- Remote developers



Team
• When you add a new 

developer(s) to the project, 
getting them up to speed is 
an essential task for other 
developers on the project.


• Having a good 
README.md file is a great 
way to keep track of tasks 
needed for initial local 
installation and required 
software.



Site v. Profile
A site is…


• All the code necessary 
to make the exact 
website being presented 
when deployed.

A profile is…


• All the code necessary 
to make many different 
versions of a website, 
whether identical or 
sharing a common 
amount of code when 
deployed.



Site v. Profile
• A site can be deployed 

with configuration that is 
exported (via drush cex, 
for example) and 
imported into a 
production during a 
deployment.

• A profile (or distribution) 
could also contain 
configuration, but it 
would also include 
custom modules, 
features, themes, tests, 
custom scripts, etc. on 
which to base a website 
build or to function as a 
“source of truth” for a 
website.



Profile
• For a profile, you could use it as a starter to a website 

build, meaning it can be used in install/configure a 
website initially, but all other enhancements/updates 
could be controlled through normal site tasks, like a drush 
config-export and -import.

- This can be referred to as an installation profile.


• You could also use it as the main source of code for a 
website, to where the website instance itself uses the 
code from the profile on a continuous basis, getting 
updates from the profile as the profile itself is updated.

- This can be referred to as a platform.



Code Quality

• When you work with many developers, it is important to 
set standards for the work that developers commit:

- Align the code to Drupal standards (such as using 

PHP_CodeSniffer’s Drupal coding standards)

- Use CSS naming conventions, like BEM

- Use atomic design principles

- Leverage and generalize code when possible to avoid 

re-writes and duplicates



Code Quality

• Developers need to give meaning to code/commits they 
are working on so others can follow.


• (Note: The presenter likes jokes! Also note: A pull request 
with a nonsensical message is good for no one!)


• Example message: “FINALLY FIXED!”


• (Good) message: “Add a translation filter to the teaser 
TWIG file for the news content type”



Code Quality

• When reviewing code, we use remote environments to 
stage changes versus the dev environment, and we ask 
the testing team to look in those environments to address 
changes.


• We also ask developers to not be afraid to delete or 
refactor code for, but with the caveat to give thorough 
testing, and to leverage existing code instead of 
accumulating debt.



Conflict Strategies

• It is pretty common for upstream changes in the 
destination repository to conflict with changes in your 
branch, especially if you are working on the same file as 
the one on the destination.


• For example, two developers add new lines to the end of 
a file - one developer merges first to dev (no conflict) but 
the second has a merge conflict while making a pull 
request to dev.



Conflict Strategies

• For another example, the 
same block of code was 
edited by two developers, but 
the pull request by the second 
will show a merge conflict to 
dev.



Conflict Strategies
• Two distinct ways to address merge conflicts are through 

a merge (from the destination) or a rebase (also from the 
destination).


• In a merge, you would merge the latest version of the 
destination branch, such as dev, into your local source 
branch.

- Command: git merge dev


• In a rebase, you would also work with the latest version of 
the destination branch.

- Command: git rebase dev



Conflict Strategies

• *Thinks out loud … those seem pretty similar*


• The main difference is a merge applies the code/history 
from the destination after your work is done on your 
branch while a rebase rewrites the code/history of your 
local commit after the commits in the destination.


• Which is better? You can decide but be consistent!



Internal Decisions
• A big factor in the success of a large development team is 

how to implement business requests and address fixes:

- Having a “technical alignment” document/meeting/story can help 

eliminate technical debt and re-work

- For example, decking whether to use custom code v. a community 

module


• Selecting how/when to adopt a community module can 
have many factors:

- How widely is the module used/adopted

- Is the module actively maintained

- Are technical issues being addressed



Internal Decisions

• How to organize code:

- Configuration v. features

- Theme patterns v. one-off code

- Templates v. view modes v. preprocessing



Communication

Do it!



Consistency

• Making good internal decisions and having a lot of 
communication between developers (and other 
stakeholders) can only go so far if your process is 
constantly changing.


• A development team is not going to reach their full 
potential (improving velocity of work completed and 
reducing bugs in said work) unless you have a consistent 
and well-understood process.



Thank You!
Questions?


